上一集 下一集
正在播放

 

深度复古
具有深厚复古灵魂的传奇硬件模拟

Deep Vintage 是一套传奇硬件模拟插件,将你带入真实的模拟魔法中。它不仅追求真实的电路复刻或特定音色特质,Deep Vintage 还通过模拟声音的整体来在数字世界中再现复古“灵魂”。深度、光泽、低频饱和度……硬件声音的每一个细微差别都为你准备好了,且只需极少的 CPU 资源和延迟。

APNN 2.0
借助 Three-Body Tech 专有的 APNN(音频处理神经网络)2.0,Deep Vintage 通过对声音的学习,创造出与原始硬件几乎无法区分的听觉体验。

APNN 2.0 是专门用于模拟模拟硬件的神经网络。在训练过程中,APNN 2.0 和硬件将输入相同的音频,APNN 2.0 学习硬件如何在波形和频谱维度上改变音频。这意味着训练良好的 APNN 2.0 实例可以捕捉源硬件的动态和音色特性。以下图表展示了,随着训练的进行,APNN 2.0 的波形和频谱响应偏差逐渐减少,最终与原始硬件难以区分。查看下面的演示,听听 APNN 2.0 如何逐步学习并复制硬件声音。

在 APNN 2.0 实例完成训练后,我们会进行严格的人工测试,并进行调整,直到我们的整个团队无法通过 ABX 测试。因此,我们自豪地宣布:

在数字音频领域,Deep Vintage 是最接近真实硬件的。

Tube Filter
Tube Filter 通过高切和低切强化 Tube Shelf 和 Tube Bell。尽管高切在混音中不常见,但 Tube Filter 流畅、自然的高切效果在需要时非常擅长“变暗”声音。

亮点
多重饱和,多阶段着色
借助 APNN 2.0 的强大功能,Deep Vintage 不仅模拟特定频率响应或音色,还捕捉所有细微的“硬件魔法”:动态、空气感、相位偏移、管压衰减、变压器的“铁质音色”等。无论是用于细微着色、适度饱和,还是完全压碎音频,它的真实表现会让你忘记这是数字化的。

独立谐波控制
在真实硬件中,谐波量在特定旋钮设置下是固定的。然而,Deep Vintage 提供超现实的灵活性,允许独立控制谐波量,与其他音色特性分开。这使你能够在保持纯净音色的同时,调节高驱动设置的强大音效。

低频饱和
音频变压器的“铁质音色”——轻微增加的低频肥厚感和饱和度,是硬件音色的精髓。Deep Vintage 不仅准确捕捉了这一点,还提供了切换此“铁质音色”的功能,让你可以在变压器或无变压器版本之间切换。无论你是追求厚重还是清晰的音色,它都能提供卓越的表现。

重采样/超采样
几乎所有音频处理网络都在固定采样率下运行,但通过优化网络,我们使重采样成为可能。Deep Vintage 完全重新设计的重采样算法确保在所有采样率下的一致性和高保真度,使模拟完全不受采样率限制。此外,还支持高达 8 倍的超采样,有效消除了混叠问题。

EQ 联合训练
大多数神经网络只能捕捉硬件的离散状态,提供有限的 EQ 组合。然而,Deep Vintage 独特地支持通过额外的 EQ 模拟实现完全连续的 EQ 调整。对于具有 EQ 功能的模型,”联合训练算法” 会同时学习硬件原型的饱和特性,并基于电路微调预建的 EQ 模块。这让你既能享受真实硬件音色,又能自由调整 EQ。

磁带 Wow/Flutter 联合训练
Wow 和 Flutter 是磁带机由于机械不一致性而产生的音高变化。Wow 指的是较慢的、更明显的音高波动,而 Flutter 则是更快的速度变化。

与 EQ 联合训练类似,APNN 2.0 使用物理建模的 Wow/Flutter 模拟,并与神经网络共同训练。这不仅使神经网络训练的结果更加真实,还让建模的 Wow/Flutter 效果更接近原始硬件。

可调噪声底
Deep Vintage 系列模拟了硬件的固有噪声底,并且你可以根据需要调整其量。

“复古 DAW”模拟
此功能受 2000 年左右经典 DAW 引入的极其细微变化(小于 -140 dB)启发。尽管变化微乎其微,但我们依然将其模拟。你可以根据需要启用或禁用此功能。

低 CPU 占用
无需昂贵的云端 GPU 集群——Deep Vintage 像其他插件一样本地运行,且占用极低的 CPU 资源。你可以轻松地在每个轨道上插入它!

更多功能

  • 原生支持 Apple Silicon
  • 撤销/重做
  • A/B 切换
  • 输入/输出电平表
  • 单声道模式
  • LR/MS 处理
  • 相位反转
  • GUI 缩放
  • 延迟:26 个采样点,约 0.6ms @ 44100 Hz

修订版 1 修复了时间炸弹问题。

Deep Vintage

Legendary Hardware Simulations with a Deep Vintage Soul

Deep Vintage is a suite of legendary hardware simulation plugins that will immerse you in real analog magic. Not merely pursuing bona fide circuit replication or specific tonal qualities, Deep Vintage simulates the entirety of sound to reproduce the vintage “soul” in a digital world. Depth, sheen, low-end saturation…every nuance of the hardware’s sonic spirit is ready for you to ignite, with minimal CPU usage and latency.

APNN 2.0

Trained with Three-Body Tech’s proprietary APNN (Audio Processing Neural Network) 2.0, Deep Vintage learns on sound, and sound alone, creating an indistinguishable listening experience from the original hardwares.

APNN 2.0 is a neural network specializes in simulating analog hardwares. During the training process, APNN 2.0 and the hardware will be inputted with the same audio, and APNN 2.0 will learn how the hardware changes the audio in both waveform and spectrum dimensions. This means that a well-trained APNN 2.0 instance can capture both the dynamic and tonal characteristics of its source hardware. The following diagram demonstrates how, as training progresses, APNN 2.0’s waveform and spectrum response deviation gradually decrease, eventually becoming indistinguishable from that of the original hardware. Check out the corresponding demos below to hear how APNN 2.0 progressively learns and replicates the sound of the hardware.

After an APNN 2.0 instance completes its training, we conduct rigorous human testing and make adjustments until our entire team fails the ABX test. This allows us to proudly announce:

in the realm of digital audio, nothing comes closer to real hardware than Deep Vintage.Tube Filter

Tube Filter reinforces Tube Shelf and Tube Bell with High Cut and Low Cut. Though High Cut is less common in mixing, Tube Filter’s smooth, natural High Cut excels at ‘darkening’ sound when necessary.

HighlightsMultiplex Saturation, Multistage Coloration

With the power of APNN 2.0, Deep Vintage simulates not just specific frequency responses or coloration, but all the subtle ‘hardware mojos’: dynamics, airness, phase shifts, tube voltage sag, transformer’s “iron sound,“ and more. Whether for subtle coloration, moderate saturation, or crushing the entire audio, its authentic performance will make you forget it’s digital.

Independent Harmonics Control

With real hardware, the amount of harmonics is fixed at a given knob setting. However, Deep Vintage introduces surreal flexibility by allowing independent control over harmonics, separate from all other tonal characteristics. This lets you dial in the sonic power of high drive settings while maintaining the purity of a clean tone.

Low Frequency Saturation

The ‘iron’ sound of audio transformers – gently added low-end girth and saturation – epitomizes the sonic character of real hardware. Deep Vintage not only accurately captures this, but also provides you with the ability to toggle this ‘iron’ sound on or off, allowing you to switch between transformer or transformer-less versions. Whether you’re aiming for a thick or clear tone, it always delivers with exceptional quality.

Re-sampling/Up-sampling

Almost all audio processing networks operates in fixed sample rates, but we’ve made resampling possible by optimizing our networks. The completely redesigned resampling algorithm in Deep Vintage ensures consistent accuracy and fidelity across all sample rates, making the simulation fully sample rate agnostic. Additionally, up to 8x oversampling is supported, effectively eliminating any aliasing issues.

EQ Co-training

Most neural networks can only capture discrete states of the hardware, thus providing only limited EQ combinations. However, Deep Vintage uniquely supports fully continous EQ adjustment through extra EQ simulations. For models with EQ, the “co-training algorithm” simultaneously learns the hardware prototype’s saturation characteristics while fine-tuning a pre-modeled EQ module based on the circuit. This allows you to enjoy the authentic hardware sound while having complete freedom over EQ adjustment.

Tape Wow/Flutter Co-training

Wow/Flutter are pitch variations that occur in tape machines due to mechanical inconsistencies in the tape transport system. Wow refers to slower, more noticeable pitch fluctuations, while flutter on the other hand, is a faster form of speed variation.

Just like EQ co-training, APNN 2.0 uses a physically modeled wow/flutter simulation and co-trains it with the neural network. This not only makes the results of neural network training sound more authentic but also brings the modeled wow/flutter effect closer to the original hardware.

Adjustable Noise Floor

The Deep Vintage series simulates the hardware’s inherent noise floor, which you can adjust in amount as needed.

“Retro DAW” Simulation

This button is inspired by the extremely subtle changes (less than -140 dB) introduced by a classic DAW from around the year 2000. While the changes are infinitesimal, we didn’t overlook them. You can enable or disable this feature as needed.

Low CPU usage

No need for expensive cloud-based GPU clusters – Deep Vintage runs locally just like any other plugin, with extremely low CPU usage. You can easily insert it on every track!

More Features

  • Apple silicon native support
  • Undo/redo
  • A/B switching
  • Input/output level meter
  • Mono mode
  • LR/MS processing
  • Phase invert
  • GUI re-scaling

Latency

26 sample points, about 0.6ms at 44100 Hz

Rev1 Fix timebomb.

发表回复

后才能评论